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Machine Translation

Source (French) translated to Target (English).

French-English translation example

French: Il était créatif, généreux, drôle, affectueux et
talentueux, et il va beaucoup me manquer.

English: He was creative, generous, funny, loving and
talented, and I will miss him dearly.
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Claims of Human Parity

[taken from Sennrich [2018a]]
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But...

Läubli et al. [2018] conduct studies to show this is not true.
⇒ Evaluation is not robust!

NMT models still poor in translating discourse phenomena
⇒ e.g., pronouns, connectives, coherence
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But...

French-English translation example

French: Il était créatif, généreux, drôle ...

Human: He was creative, generous, funny ...

MT: It was creative, generous, funny ...

Predominantly used MT metric: BLEU

Measures n-gram word overlap with reference translation
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Discourse Phenomena

In typical text (discourse), sentences are related:

John lives near the park.
He often goes there. (pronouns)

Eva walked into town to buy ice-cream.
But the shop was closed. (connective)

[taken from Hardmeier [2018]]
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Context Aware Machine Translation

MT and MT evaluation traditionally at sentence level.

Recent systems now try to model extra-sentential context.

But BLEU cannot reflect any improvements.
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Backtranslation

Training strategies typically used to improve MT are:
1 Backtranslation [Sennrich et al., 2015]

Additional pseudo-parallel data

Backtranslation Example

Monolingual: she was eating biscuits afterwards.

En-De MT: sie aß anschließend kekse.

Reference: sie hat anschließend ein paar hundekuchen gefressen.

De-En
sie aß anschließend kekse.

⇓
she was eating biscuits afterwards.
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Motivation

NMT models poor in translating discourse phenomena like
pronouns [Sennrich, 2018b]

Elaborate contextual models are not consistent in performance
across languages [Jwalapuram et al., 2020]

A typical pronoun translation error is mistranslation of the gender:

Pronoun Translation Error

S: Mir wurdediese Wohnungin Earls Court gezeigt, und sie hatte ...
T: I was shown this apartment in Earls Court , and she had ...
Correct: I was shown this apartment in Earls Court , and it had ...
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Motivation

Traditional conditional language model used for MT objective
may be proving inadequate

Propose hybrid conditional generative-discriminative losses
⇒ improve the learning power of the model

1 Target improvement of pronoun translations through
fine-tuning

2 Without using additional data
3 Leverage existing training data the model has failed to learn

from
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Conditional Language Model loss

For a source-target sentence pair (x , y), a CLM predicts a
conditional probability distribution Pθ(y1:n|x), where n = number
of tokens in the target text and c = context vector that
summarizes the relevant input.

Pθ(y1:n|x) =
n∏

t=1

Pθ(yt |y<t , c) (1)

Lg = −1

n

n∑
t=1

logPθ(yt |y<t , c) (2)
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Fine-tuning Framework - Intuition for Additional Loss

Characterised as
1 Incorrect output produced by the model - “negative” class
2 Target token is from “positive” class

Main intuition: promote positive sample over negative sample
rather than over entire vocabulary.

Two variants:

Log-likelihood loss
Max-margin loss
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Log-likelihood loss

Maximize the probability of the reference token by minimizing:

Lnll = −1

n

n∑
t=1

log
exp(ŷ+

t )(
exp(ŷ+

t ) + exp(ŷ−
t )
) (3)

y+ is the reference (positive) translation.

y− is the model (negative) output.
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Max-Margin Loss

Pairwise ranking loss [Collobert et al., 2011] that maximizes the
distance between positive and negative samples.

Lmm =
1

n

n∑
t=1

max{0, µ− ŷ+t + ŷ−t } (4)

µ is the margin.
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Training

Losses can be applied on all tokens or targeted towards
pronouns.

Final fine-tuning loss combines

discriminative loss Ld aimed at correcting the mistakes
generative loss Lg needed to preserve the translation adequacy
and fluency
weighted by λ

Lgd = λLg + (1− λ)Ld (5)
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Training
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Fine-tuning Data

Given a training corpus D = (S,R), where S is the source and R
is the target/reference text

Translate D using a baseline model M to obtain source to
target translations TM.

Align TM with reference R.

Find pronoun translations in TM that do not match reference
R.
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Fine-tuning Data

Pronoun Translation Error

S: Mir wurdediese Wohnungin Earls Court gezeigt, und sie hatte ...
T: I was shown this apartment in Earls Court , and she had ...
Correct: I was shown this apartment in Earls Court , and it had ...

For each sentence with a mistranslated pronoun, extract the
source sentences from S.

The corresponding source and reference sentences form the
pronoun-targeted fine-tuning subset, referred to as
Dprn = (S ′

, T ′
).
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Baseline Models

Sen2Sen: 6-layer base Transformer model; translates each
sentence independently.

Concat: 6-layer base Transformer, translates sentence given
one previous sentence as context.

German-English (De-En) translation task

2.5M pairs of parallel training data (IWSLT, Europarl,
Newscommentary)

300K pairs of fine-tuning subset data

Tested on WMT14 test data and targeted pronoun testset
[Jwalapuram et al., 2019]
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Baseline Results

WMT14 Pronoun Testset

Model Train BLEU BLEU P R F1

Sen2Sen D 31.64 35.56 77.92 66.01 69.55
Concat D 31.81 36.16 80.39 68.49 72.03

Simple context model outperforms the sentence-level model.
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Training on Targeted Data

Fine-tuning WMT14 Pronoun Testset

data for Sen2Sen BLEU BLEU P R F1

D (baseline) 31.64 35.56 77.92 66.01 69.55

Dprn 30.43 34.72 79.49 67.55 71.02
D + Dprn (shuffled) 31.31 35.48 78.35 67.02 70.35
D + Dprn 31.23 35.39 79.61 67.99 71.40
2D + Dprn 31.56 35.57 79.25 68.01 71.35
D (Increased training) 31.53 35.60 78.14 66.15 69.77

Concat

D (baseline) 31.81 36.16 80.39 68.49 72.03
2D + Dprn 31.31 36.12 81.20 69.35 72.84

BLEU scores drop with only fine-tuning data, but
improvement in pronoun translations.

Increased training does not improve pronoun translations →
improvement from the targeted dataset.
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Max-margin Loss + Targeted Data

Fine-tuning WMT14 Pronoun Testset

Model data BLEU BLEU P R F1

Baseline Sen2Sen - 31.64 35.56 77.92 66.01 69.55
Baseline Concat - 31.81 36.16 80.39 68.49 72.03

All tokens

Sen2Sen 2D +Dprn 32.14* 36.16 78.83 66.15 69.77*
Sen2Sen 2D +Drand 31.86 35.88 78.07 66.00 69.65
Sen2Sen D 31.75 36.34 78.27 66.36 69.91
Concat 2D +Dprn 31.75 36.70 81.25 69.27 72.88

Only Pronouns

Sen2Sen 2D +Dprn 31.81* 36.43 78.62 66.82 70.37*
Sen2Sen 2D +Drand 31.71 36.12 78.65 66.72 70.32
Sen2Sen D 31.89 36.20 78.31 66.32 69.98
Concat 2D +Dprn 31.99* 36.64 80.87 69.07 72.64

* statistically significant; Concat best performing model.

Fine-tuning with random subset does not lead to similar
improvements.

All tokens vs. Only pronouns ⇒ BLEU vs. F1.
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Log-likelihood loss + Targeted data

Fine-tuning WMT14 Pronoun Testset

Model data BLEU BLEU P R F1

Baseline Sen2Sen - 31.64 35.56 77.92 66.01 69.55
Baseline Concat - 31.81 36.16 80.39 68.49 72.03

All tokens

Sen2Sen 2D +Dprn 31.83* 36.50 79.18 67.16 70.78*
Sen2Sen 2D +Drand 31.73 36.16 78.32 66.62 70.15
Sen2Sen D 31.77 36.24 78.35 66.17 69.86
Concat 2D +Dprn 31.85 36.61 80.91 68.91 72.57

Only Pronouns

Sen2Sen 2D +Dprn 31.73 36.30 79.01 66.80 70.50*
Sen2Sen 2D +Drand 32.05 36.43 78.35 66.25 69.87
Sen2Sen D 32.05 35.81 78.58 66.52 70.22
Concat 2D +Dprn 32.00* 36.57 80.89 68.66 72.39

Comparable results for log-loss
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Examples

WMT14 Testset

Source 14 stunden kämpften die ärzte um das überleben des opfers , jedoch vergeblich .
Reference for 14 hours, doctors battled to save the life of the victim , ultimately in vain .
Baseline 14 hours of doctors fought for the victim’s survival , but in vain .
Our best model the doctors fought 14 hours for the survival of the victim , but in vain .

Pronoun Testset

Context ... die die amerikanische flamme in die umnachtete welt bringe : lady liberty geht voran .
Source sie soll die fackel der freiheit von den vereinigten staaten in den rest der welt tragen .
Context ... taking the american flame out to the benighted world : lady liberty is stepping forward .
Reference she is meant to be carrying the torch of liberty from the united states to the rest of the world .
Baseline it is meant to carry the torch of freedom from the united states to the rest of the world .
Our best model she is supposed to carry the torch of freedom from the united states to the rest of the world .
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Comparison with Backtranslation

WMT14 Pronoun Testset

Model BLEU BLEU P R F1

Baseline Sen2Sen 31.64 35.56 77.92 66.01 69.55
Backtranslation 32.57 38.54 80.61 67.14 71.37
Best fine-tuned Sen2Sen 32.14 36.16 78.83 66.15 69.77
Best fine-tuned Concat 32.00 36.57 80.89 68.66 72.39

Backtranslation (+76M) has best BLEU.

But Concat outperforms for pronoun translations.

31 / 44



Introduction Hybrid Losses Experiments Analysis Conclusions and Future Work References

IWSLT13 testset

Sen2Sen Concat

Model BLEU Prn. F1 BLEU Prn. F1

Baseline 31.64 60.47 32.10 62.01
Backtranslation 30.30 58.02 - -

All tokens

Max-margin 31.88 60.87 32.95 61.90
Log-likelihood 32.02 60.64 32.78 62.10

Only Pronouns

Max-margin 32.13 60.61 33.13 62.20
Log-likelihood 32.16 60.83 32.78 61.97

Backtranslation fails to generalize.

Fine-tuning improves results here as well.
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French-English

Fine-tuning WMT14 Pronoun Testset

Model loss BLEU BLEU P R F1

Baseline Sen2Sen - 35.61 34.53 90.64 64.00 73.73
Baseline Concat - 36.06 35.18 84.86 72.07 75.86

All tokens

Sen2Sen max-margin 36.12* 35.31 93.61 64.26 74.56*
Sen2Sen log-likelihood 36.04* 35.39 96.39 66.95 77.38*
Concat max-margin 35.98 35.41 85.93 72.48 76.48
Concat log-likelihood 35.98 35.09 85.07 71.43 75.51

Only Pronouns

Sen2Sen max-margin 36.05* 35.34 93.48 67.24 76.96
Sen2Sen log-likelihood 35.86* 35.09 93.62 63.74 73.88
Concat max-margin 35.97 35.26 85.71 71.97 76.07
Concat log-likelihood 36.09 35.55 85.85 72.38 76.50

2.53M pairs training data, 500K pairs fine-tuning subset.

Consistent improvements with fine-tuning.
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Czech-English

Fine-tuning WMT14 Pronoun Testset

Model loss BLEU BLEU P R F1

Baseline Sen2Sen - 25.23 21.88 82.65 48.78 60.40
Baseline Concat - 28.27 24.19 71.94 55.57 60.37

All tokens

Sen2Sen max-margin 26.13* 22.49 84.18 50.71 62.16*
Sen2Sen log-likehood 26.08* 22.65 83.02 49.02 60.53
Concat max-margin 27.56 23.69 73.82 57.81 62.45*
Concat log-likelihood 27.50 23.85 74.43 58.17 62.89*

Only Pronouns

Sen2Sen max-margin 26.10* 22.56 83.02 49.96 61.03
Sen2Sen log-likelihood 26.01* 22.62 83.90 49.17 60.88
Concat max-margin 27.48 23.76 74.20 57.72 62.53*
Concat log-likelihood 27.59 23.72 74.18 57.77 62.54

992K pairs training data, 100K pairs fine-tuning subset.

Consistent improvements with fine-tuning.
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Analysis

Max-margin and Log-likelihood loss perform comparably.

Sen2Sen model BLEU improvements but no pronoun
translation improvements → lack of context.

General BLEU improvements → targeted data subset that
model failed to learn from.
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Conclusions and Future Work

Fine-tuning framework is generic; e.g., can be applied to NEs.

Adapt to other directed generation tasks; e.g.,
coherence/factual correctness in abstractive summarization or
controlled text generation.

Address training issues from datasets; e.g., correct biases
(such as gender) in data or improve system robustness.

End-to-end system that automatically filters targeted data.
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Thank you

Thank you!

Link to full paper (EMNLP 2020):
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