Introduction	Hybrid Losses	Experiments	Analysis	Conclusions and Future Work	References

Pronoun-Targeted Fine-tuning for NMT with Hybrid Losses

Prathyusha Jwalapuram, Shafiq Joty and Youlin Shen

School of Computer Science and Engineering Nanyang Technological University

Introduction 000000000	Hybrid Losses 00000000	Experiments 0000000000	Analysis O	Conclusions and Future Work	References
Outline					

- Background
- Motivation
- 2 Hybrid Losses
 - Conditional Language Model Loss
 - Conditional Generative-Discriminative Training
- 3 Experiments
 - Baseline Results
 - Targeted Data Results
 - Targeted Data and Loss Results
 - Additional Results

4 Analysis

•00000000	00000000	0000000000	0	00	References
Machine	Translatio	on			

Source (French) translated to Target (English).

French-English translation example

French: Il était créatif, généreux, drôle, affectueux et talentueux, et il va beaucoup me manquer.

English: He was creative, generous, funny, loving and talented, and I will miss him dearly.

Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Microsoft reaches a historic milestone, using AI to match human performance in translating news from Chinese to English

March 14, 2018 | Allison Linn

[taken from Sennrich [2018a]]

Introduction 00000000	Hybrid Losses 00000000	Experiments 0000000000	Analysis O	Conclusions and Future Work	References
But					

- Läubli et al. [2018] conduct studies to show this is not true.
 ⇒ Evaluation is not robust!
- NMT models still poor in translating discourse phenomena
 ⇒ e.g., pronouns, connectives, coherence

Introduction 000000000	Hybrid Losses 00000000	Experiments 000000000	Analysis O	Conclusions and Future Work	References
But					

French-English translation example

French: II était créatif, généreux, drôle ...

Human: He was creative, generous, funny ...

MT: It was creative, generous, funny ...

- Predominantly used MT metric: BLEU
- Measures n-gram word overlap with reference translation

Introduction 000000000	Hybrid Losses 00000000	Experiments 0000000000	Analysis O	Conclusions and Future Work	References
Discours	e Phenom	nena			

In typical text (discourse), sentences are related:

- John lives near the park. **He** often goes **there**. (pronouns)
- Eva walked into town to buy ice-cream. But the shop was closed. (connective)

[taken from Hardmeier [2018]]

Context Aware Machine Translation

- MT and MT evaluation traditionally at sentence level.
- Recent systems now try to model extra-sentential context.
- But BLEU cannot reflect any improvements.

Introduction 000000 00 0	Hybrid Losses 00000000	Experiments 0000000000	Analysis O	Conclusions and Future Work	References
Backtran	slation				

- Training strategies typically used to improve MT are:
 - Backtranslation [Sennrich et al., 2015]
 - Additional pseudo-parallel data

	OOOOOOOOOOOOO	Experiments 0000000000	Analysis O	Conclusions and Future Work	References
Backtra	nslation				

• Training strategies typically used to improve MT are:

- Backtranslation [Sennrich et al., 2015]
 - Additional pseudo-parallel data

Backtranslation Example

Monolingual: she was eating biscuits afterwards.

En-De MT: sie aß anschließend kekse.

Reference: sie hat anschließend ein paar hundekuchen gefressen.

De-En

sie aß anschließend kekse.

she was eating biscuits afterwards.

Introduction 000000000	Hybrid Losses 00000000	Experiments 0000000000	Analysis O	Conclusions and Future Work	References
Motivati	on				

- NMT models poor in translating discourse phenomena like pronouns [Sennrich, 2018b]
- Elaborate contextual models are not consistent in performance across languages [Jwalapuram et al., 2020]

A typical pronoun translation error is mistranslation of the gender:

Pronoun Translation Error

S: Mir wurdediese Wohnungin Earls Court gezeigt, und **sie** hatte ... *T:* I was shown this apartment in Earls Court , and **she** had ... *Correct:* I was shown this apartment in Earls Court , and **it** had ...

Introduction 00000000	Hybrid Losses	Experiments 0000000000	Analysis O	Conclusions and Future Work	References
Motivati	on				

• Traditional conditional language model used for MT objective may be proving inadequate

Introduction 00000000	Hybrid Losses	Experiments 0000000000	Analysis O	Conclusions and Future Work	References
Motivati	on				

- Traditional conditional language model used for MT objective may be proving inadequate
- Propose hybrid conditional generative-discriminative losses
 ⇒ improve the learning power of the model

Introduction 00000000	Hybrid Losses	Experiments 0000000000	Analysis O	Conclusions and Future Work	References
Motivati	on				

- Traditional conditional language model used for MT objective may be proving inadequate
- Propose hybrid conditional generative-discriminative losses
 ⇒ improve the learning power of the model
 - Target improvement of pronoun translations through fine-tuning
 - Without using additional data
 - Leverage existing training data the model has failed to learn from

For a source-target sentence pair (x, y), a CLM predicts a conditional probability distribution $P_{\theta}(y_{1:n}|x)$, where n = number of tokens in the target text and $\boldsymbol{c} =$ context vector that summarizes the relevant input.

$$P_{\theta}(y_{1:n}|x) = \prod_{t=1}^{n} P_{\theta}(y_t|y_{< t}, \boldsymbol{c})$$
(1)

$$\mathcal{L}_{g} = -\frac{1}{n} \sum_{t=1}^{n} \log P_{\theta}(y_{t}|y_{< t}, \boldsymbol{c})$$
(2)

Characterised as

- Incorrect output produced by the model "negative" class
- 2 Target token is from "positive" class

Characterised as

- Incorrect output produced by the model "negative" class
- 2 Target token is from "positive" class
- Main intuition: promote positive sample over negative sample rather than over entire vocabulary.

• Characterised as

- Incorrect output produced by the model "negative" class
- Parget token is from "positive" class
- Main intuition: promote positive sample over negative sample rather than over entire vocabulary.
- Two variants:
 - Log-likelihood loss
 - Max-margin loss

l og_likel	ihood loss	<	0	00		
Log-likelihood loss						

Maximize the probability of the reference token by minimizing:

$$\mathcal{L}_{nll} = -\frac{1}{n} \sum_{t=1}^{n} \log \frac{\exp(\hat{y}_t^+)}{\left(\exp(\hat{y}_t^+) + \exp(\hat{y}_t^-)\right)}$$
(3)

- y^+ is the reference (positive) translation.
- y^- is the model (negative) output.

Introduction 000000000	Hybrid Losses ○00●0000	Experiments 0000000000	Analysis O	Conclusions and Future Work	References
Max-Mai	rgin Loss				

Pairwise ranking loss [Collobert et al., 2011] that maximizes the distance between positive and negative samples.

$$\mathcal{L}_{mm} = \frac{1}{n} \sum_{t=1}^{n} \max\{0, \mu - \hat{y}_{t}^{+} + \hat{y}_{t}^{-}\}$$
(4)

• μ is the margin.

Introduction 000000000	Hybrid Losses 00000000	Experiments 0000000000	Analysis 0	Conclusions and Future Work	References
Training					

- Losses can be applied on all tokens or targeted towards pronouns.
- Final fine-tuning loss combines
 - \bullet discriminative loss \mathcal{L}_d aimed at correcting the mistakes
 - \bullet generative loss \mathcal{L}_g needed to preserve the translation adequacy and fluency
 - \bullet weighted by λ

$$\mathcal{L}_{gd} = \lambda \mathcal{L}_g + (1 - \lambda) \mathcal{L}_d \tag{5}$$

Introduction 000000000	Hybrid Losses ○00000000	Experiments 0000000000	Analysis O	Conclusions and Future Work	References
Training					

Introduction 000000000	Hybrid Losses ○00000000	Experiments 0000000000	Analysis O	Conclusions and Future Work	References
Fine-tun	ing Data				

Given a training corpus $\mathcal{D}=(\mathcal{S},\mathcal{R}),$ where \mathcal{S} is the source and \mathcal{R} is the target/reference text

- Translate ${\cal D}$ using a baseline model ${\cal M}$ to obtain source to target translations ${\cal T}_{{\cal M}}.$
- Align $\mathcal{T}_{\mathcal{M}}$ with reference \mathcal{R} .
- Find pronoun translations in $\mathcal{T}_{\mathcal{M}}$ that do not match reference $\mathcal{R}.$

Introduction 000000000	Hybrid Losses ○000000●	Experiments 0000000000	Analysis O	Conclusions and Future Work	References
Fine-tun	ing Data				

Pronoun Translation Error

S: Mir wurdediese Wohnungin Earls Court gezeigt, und **sie** hatte ... *T:* I was shown this apartment in Earls Court , and **she** had ... *Correct:* I was shown this apartment in Earls Court , and **it** had ...

- For each sentence with a mistranslated pronoun, extract the source sentences from \mathcal{S} .
- The corresponding source and reference sentences form the pronoun-targeted fine-tuning subset, referred to as $\mathcal{D}_{prn} = (\mathcal{S}', \mathcal{T}').$

Introduction 000000000	Hybrid Losses	Experiments •••••	Analysis O	Conclusions and Future Work	References
Baseline	Models				

- SEN2SEN: 6-layer base Transformer model; translates each sentence independently.
 - CONCAT: 6-layer base Transformer, translates sentence given one previous sentence as context.
 - German-English (De-En) translation task
 - 2.5M pairs of parallel training data (IWSLT, Europarl, Newscommentary)
 - 300K pairs of fine-tuning subset data
 - Tested on WMT14 test data and targeted pronoun testset [Jwalapuram et al., 2019]

Introduction 000000000	Hybrid Losses 00000000	Experiments 000000000	Analysis O	Conclusions and Future Work	References
Baseline	Results				

		WMT14	Pronoun Testset			
Model	Train	BLEU	BLEU	Р	R	F1
SEN2SEN	\mathcal{D}	31.64	35.56	77.92	66.01	69.55
Concat	\mathcal{D}	31.81	36.16	80.39	68.49	72.03

• Simple context model outperforms the sentence-level model.

		000000000			
Introduction	Hybrid Losses	Experiments	Analysis	Conclusions and Future Work	References

Training on Targeted Dat	hg on Targeted Dat	ata
--------------------------	--------------------	-----

Fine-tuning	WMT14	Pronoun Testset			t
data for $\operatorname{Sen}2\operatorname{Sen}$	BLEU	BLEU	Р	R	F1
\mathcal{D} (baseline)	31.64	35.56	77.92	66.01	69.55
\mathcal{D}_{prn}	30.43	34.72	79.49	67.55	71.02
$\mathcal{D} + \mathcal{D}_{prn}$ (shuffled)	31.31	35.48	78.35	67.02	70.35
$\mathcal{D} + \mathcal{D}_{prn}$	31.23	35.39	79.61	67.99	71.40
$2\mathcal{D} + \mathcal{D}_{prn}$	31.56	35.57	79.25	68.01	71.35
\mathcal{D} (Increased training)	31.53	35.60	78.14	66.15	69.77
Concat					
\mathcal{D} (baseline)	31.81	36.16	80.39	68.49	72.03
$2\mathcal{D}+\mathcal{D}_{prn}$	31.31	36.12	81.20	69.35	72.84

- BLEU scores drop with only fine-tuning data, but improvement in pronoun translations.
- \bullet Increased training does not improve pronoun translations \rightarrow improvement from the targeted dataset.

 Introduction
 Hybrid Losses
 Experiments
 Analysis
 Conclusions and Future Work
 References

 00000000
 00000000
 0
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00</

Max-margin Loss + Targeted Data

	Fine-tuning	WMT14	Pronoun Testset					
Model	data	BLEU	BLEU	Р	R	F1		
Baseline SEN2SEN	-	31.64	35.56	77.92	66.01	69.55		
$Baseline\ \mathrm{CONCAT}$	-	31.81	36.16	80.39	68.49	72.03		
All tokens								
Sen2Sen	$2\mathcal{D} + \mathcal{D}_{prn}$	32.14*	36.16	78.83	66.15	69.77*		
Sen2Sen	$2\mathcal{D} + \mathcal{D}_{rand}$	31.86	35.88	78.07	66.00	69.65		
Sen2Sen	\mathcal{D}	31.75	36.34	78.27	66.36	69.91		
Concat	$2\mathcal{D}+\mathcal{D}_{prn}$	31.75	36.70	81.25	69.27	72.88		
Only Pronouns								
Sen2Sen	$2\mathcal{D} + \mathcal{D}_{prn}$	31.81*	36.43	78.62	66.82	70.37*		
Sen2Sen	$2\mathcal{D} + \mathcal{D}_{rand}$	31.71	36.12	78.65	66.72	70.32		
Sen2Sen	\mathcal{D}	31.89	36.20	78.31	66.32	69.98		
Concat	$2\mathcal{D} + \mathcal{D}_{prn}$	31.99*	36.64	80.87	69.07	72.64		

- * statistically significant; CONCAT best performing model.
- Fine-tuning with random subset does not lead to similar improvements.
- All tokens vs. Only pronouns \Rightarrow BLEU vs. F1.

3

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

Introduction	Hybrid Losses	Experiments	Analysis	Conclusions and Future Work	References
		000000000			

Log-likelihood loss + Targeted data

	Fine-tuning	Fine-tuning WMT14		Pronoun Testset			
Model	data	BLEU	BLEU	Р	R	F1	
Baseline SEN2SEN	-	31.64	35.56	77.92	66.01	69.55	
Baseline CONCAT	-	31.81	36.16	80.39	68.49	72.03	
	All t	okens					
Sen2Sen	$2D + D_{prn}$	31.83*	36.50	79.18	67.16	70.78*	
Sen2Sen	$2D + D_{rand}$	31.73	36.16	78.32	66.62	70.15	
Sen2Sen	\mathcal{D}	31.77	36.24	78.35	66.17	69.86	
Concat	$2\mathcal{D}+\mathcal{D}_{prn}$	31.85	36.61	80.91	68.91	72.57	
	Only F	ronouns					
Sen2Sen	$2D + D_{prn}$	31.73	36.30	79.01	66.80	70.50*	
Sen2Sen	$2D + D_{rand}$	32.05	36.43	78.35	66.25	69.87	
Sen2Sen	\mathcal{D}	32.05	35.81	78.58	66.52	70.22	
Concat	$2D + D_{prn}$	32.00*	36.57	80.89	68.66	72.39	

• Comparable results for log-loss

000000000	0000000	0000000000	0	00	
Examples	S				

	WMT14 Testset				
Source	14 stunden kämpften die ärzte um das überleben des opfers , jedoch vergeblich .				
Reference	for 14 hours, doctors battled to save the life of the victim , ultimately in vain .				
Baseline	14 hours of doctors fought for the victim's survival , but in vain .				
Our best model	the doctors fought 14 hours for the survival of the victim , but in vain .				
Pronoun Testset					
Context	die die amerikanische flamme in die umnachtete welt bringe : lady liberty geht voran .				
Source	sie soll die fackel der freiheit von den vereinigten staaten in den rest der welt tragen .				
Context	taking the american flame out to the benighted world : lady liberty is stepping forward .				
Reference	she is meant to be carrying the torch of liberty from the united states to the rest of the world .				
Baseline	it is meant to carry the torch of freedom from the united states to the rest of the world .				
Our best model	she is supposed to carry the torch of freedom from the united states to the rest of the world .				

Introduction 000000000	Hybrid Losses	Experiments 000 000 ●000	Analysis O	Conclusions and Future Work	References
_					

Comparison with Backtranslation

	WMT14	Pronoun Testset			
Model	BLEU	BLEU	Р	R	F1
Baseline SEN2SEN	31.64	35.56	77.92	66.01	69.55
Backtranslation	32.57	38.54	80.61	67.14	71.37
Best fine-tuned SEN2SEN	32.14	36.16	78.83	66.15	69.77
Best fine-tuned CONCAT	32.00	36.57	80.89	68.66	72.39

- Backtranslation (+76M) has best BLEU.
- But CONCAT outperforms for pronoun translations.

IW/SI T1?	R testset				
Introduction 000000000	Hybrid Losses 00000000	Experiments 0000000 00 0	Analysis 0	Conclusions and Future Work	References

	Sen2Sen		Со	NCAT			
Model	BLEU	Prn. F1	BLEU	Prn. F1			
Baseline	31.64	60.47	32.10	62.01			
Backtranslation	30.30	58.02	-	-			
All tokens							
Max-margin	31.88	60.87	32.95	61.90			
Log-likelihood	32.02	60.64	32.78	62.10			
Only Pronouns							
Max-margin	32.13	60.61	33.13	62.20			
Log-likelihood	32.16	60.83	32.78	61.97			

- Backtranslation fails to generalize.
- Fine-tuning improves results here as well.

Introduction 000000000	Hybrid Losses 00000000	Experiments 00000000000	Analysis O	Conclusions and Future Work	References
French-I	English				

	Fine-tuning	WMT14	Pronoun Testset			t		
Model	loss	BLEU	BLEU	Р	R	F1		
$Baseline\ \mathrm{Sen} 2\mathrm{Sen}$	-	35.61	34.53	90.64	64.00	73.73		
$Baseline\ \mathbf{CONCAT}$	-	36.06	35.18	84.86	72.07	75.86		
All tokens								
Sen2Sen	max-margin	36.12*	35.31	93.61	64.26	74.56*		
Sen2Sen	log-likelihood	36.04*	35.39	96.39	66.95	77.38*		
Concat	max-margin	35.98	35.41	85.93	72.48	76.48		
Concat	log-likelihood	35.98	35.09	85.07	71.43	75.51		
	Only Pr	ronouns						
Sen2Sen	max-margin	36.05*	35.34	93.48	67.24	76.96		
Sen2Sen	log-likelihood	35.86*	35.09	93.62	63.74	73.88		
Concat	max-margin	35.97	35.26	85.71	71.97	76.07		
Concat	log-likelihood	36.09	35.55	85.85	72.38	76.50		

- 2.53M pairs training data, 500K pairs fine-tuning subset.
- Consistent improvements with fine-tuning.

Czech-F	nglich				
Introduction 000000000	Hybrid Losses 00000000	Experiments 0000000000	Analysis 0	Conclusions and Future Work	References

	Fine-tuning	Pronoun Testset						
Model	loss	BLEU	BLEU	Р	R	F1		
Baseline SEN2SEN	-	25.23	21.88	82.65	48.78	60.40		
$Baseline\ \mathbf{CONCAT}$	-	28.27	24.19	71.94	55.57	60.37		
All tokens								
Sen2Sen	max-margin	26.13*	22.49	84.18	50.71	62.16*		
Sen2Sen	log-likehood	26.08*	22.65	83.02	49.02	60.53		
Concat	max-margin	27.56	23.69	73.82	57.81	62.45*		
Concat	log-likelihood	27.50	23.85	74.43	58.17	62.89*		
Only Pronouns								
Sen2Sen	max-margin	26.10*	22.56	83.02	49.96	61.03		
Sen2Sen	log-likelihood	26.01*	22.62	83.90	49.17	60.88		
Concat	max-margin	27.48	23.76	74.20	57.72	62.53*		
Concat	log-likelihood	27.59	23.72	74.18	57.77	62.54		

- 992K pairs training data, 100K pairs fine-tuning subset.
- Consistent improvements with fine-tuning.

Introduction 000000000	Hybrid Losses 00000000	Experiments 0000000000	Analysis	Conclusions and Future Work	References
Analysis					

• Max-margin and Log-likelihood loss perform comparably.

Introduction 000000000	Hybrid Losses 00000000	Experiments 0000000000	Analysis •	Conclusions and Future Work	References
Analysis					

- Max-margin and Log-likelihood loss perform comparably.
- SEN2SEN model BLEU improvements but no pronoun translation improvements \rightarrow lack of context.

Introduction 000000000	Hybrid Losses 00000000	Experiments 0000000000	Analysis •	Conclusions and Future Work	References
Analysis					

- Max-margin and Log-likelihood loss perform comparably.
- SEN2SEN model BLEU improvements but no pronoun translation improvements \rightarrow lack of context.
- \bullet General BLEU improvements \rightarrow targeted data subset that model failed to learn from.

Introduction 000000000	Hybrid Losses	Experiments 0000000000	Analysis O	Conclusions and Future Work ●0	References		
Conclusions and Future Work							

• Fine-tuning framework is generic; *e.g.*, can be applied to NEs.

- Fine-tuning framework is generic; *e.g.*, can be applied to NEs.
- Adapt to other directed generation tasks; *e.g.*, coherence/factual correctness in abstractive summarization or controlled text generation.

Conclusions and Future Work

- Fine-tuning framework is generic; e.g., can be applied to NEs.
- Adapt to other directed generation tasks; *e.g.*, coherence/factual correctness in abstractive summarization or controlled text generation.
- Address training issues from datasets; *e.g.*, correct biases (such as gender) in data or improve system robustness.

Conclusions and Future Work

- Fine-tuning framework is generic; e.g., can be applied to NEs.
- Adapt to other directed generation tasks; *e.g.*, coherence/factual correctness in abstractive summarization or controlled text generation.
- Address training issues from datasets; *e.g.*, correct biases (such as gender) in data or improve system robustness.
- End-to-end system that automatically filters targeted data.

Thank you!

Link to full paper (EMNLP 2020):

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from scratch. *The Journal of Machine Learning Research*, 12:2493–2537, 2011.

Christian Hardmeier. Discourse in machine translation. urlhttps://ufal.mff.cuni.cz/mtm18/files/03-discourse-in-mtchristian-hardmeier.pdf, 2018.

Prathyusha Jwalapuram, Shafiq Joty, Irina Temnikova, and Preslav Nakov. Evaluating pronominal anaphora in machine translation: An evaluation measure and a test suite. In *Proceedings of the* 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2964–2975, Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1294. URL https://www.aclweb.org/anthology/D19-1294. Prathyusha Jwalapuram, Barbara Rychalska, Shafiq R. Joty, and Dominika Basaj. Can your context-aware MT system pass the DiP benchmark tests? : Evaluation benchmarks for discourse phenomena in machine translation. *ArXiv*, abs/2004.14607, 2020.

Samuel Läubli, Rico Sennrich, and Martin Volk. Has machine translation achieved human parity? a case for document-level evaluation. In *EMNLP*, 2018.

Rico Sennrich. Why the time is ripe for discourse in machine translation.

http://homepages.inf.ed.ac.uk/rsennric/wnmt2018.pdf, 2018a.

Rico Sennrich. Why the time is ripe for discourse in machine translation. 2018b. URL

http://homepages.inf.ed.ac.uk/rsennric/wnmt2018.pdf. Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation models with monolingual data. *ArXiv*, abs/1511.06709, 2015.