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Coherence Modeling
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• Increasing claims of fluency - applications in language
generation, summarization, machine translation, etc.

• Most work on coherence modeling ignores downstream
applications
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Motivation

• Coherence models are commonly trained and evaluated on the
permuted document task [Barzilay and Lapata, 2005]
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Motivation

• Performance on permuted document task only partially
indicative of coherence modeling capabilities [Pishdad et al.,
2020]

• SOTA models perform well on permuted document task but
generalize poorly to downstream tasks [Mohiuddin et al.,
2021]
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Method

• Coherence models usually trained pairwise on permuted
document task

• Model only exposed to limited number of samples in this
setting [Li and Jurafsky, 2017]

• Learning with more negatives maximizes the mutual
information between representations [van den Oord et al.,
2018]

⇒ Compare each ‘positive’ document to multiple ‘negative’
documents using contrastive learning [Gutmann and Hyvärinen,
2010]
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Model

• Obtain [CLS] representation of input document D using
XLNet [Yang et al., 2019]

• Linear layer converts document representation to coherence
score fθ(D)

→ No task-specific architecture - trained purely through
self-supervision
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Contrastive Learning
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Hard Negative Mining

• Quality of negatives used in contrastive training strongly
influences model success [Wu et al., 2020]

⇒ Perform hard negative mining
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Local Negative Sample Ranking

• Sample more negatives than needed for training (h > N)

• Train model for a few steps

• Score the h negatives for the next set of training data

• Use top N to train the next steps

→ Model iteratively mines harder and harder samples as it
improves
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Hard Negative Mining
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Development Set Accuracy during Model Training

• Training with hardest negatives can lead to bad local minima
[Xuan et al., 2020]

• Larger gradient norms result in abrupt gradient steps [Xiong
et al., 2020]
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Global Negative Queue

• Number of negatives for contrastive training limited by
resource constraints

→ Maintain large global queue of negative samples
independent of current training sample

• But representations in the queue will become inconsistent as
training progresses

→ Use an auxiliary momentum encoder [He et al., 2020]
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Model Architecture
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Momentum Encoder

• Auxiliary momentum encoder parameters are not updated
through backpropagation

• Momentum encoder ϕ′ is updated based on the base encoder
ϕ:

ϕ′ ← µ ∗ ϕ′ + (1− µ) ∗ ϕ (1)

• µ ∈ [0, 1) is the momentum coefficient
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Momentum Encoder

• Use hard negative mining in combination with momentum
encoder

• Momentum model - temporal ensemble of
exponential-moving-average versions of base model

• Due to this, gradients from the momentum loss also help in
stabilising the overall training
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Test sets

WSJ: Standard permuted document train & test set

SummEval: Machine generated summaries [Fabbri et al., 2020]

LMvLM: Language model output

INSteD-CNN: Sentence instrusion detection (CNN) [Shen et al., 2021]

INSteD-Wiki: Sentence intrusion detection (Wikipedia) [Shen et al., 2021]

StoryCloze: Commonsense reasoning [Sharma et al., 2018]
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Results

• LCD [Xu et al., 2019] and UNC [Moon et al., 2019] perform
poorly across independent test sets

• Our models improve not only on the WSJ test set, but
significantly across all the independent test sets
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Number of Ranked Negatives
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Effect of Negatives Ranked for Hard Negative Mining

• Increasing number of negatives improves results, particularly
on OOD test sets
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Momentum Coefficient
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Effect of varying the Momentum Coefficient

• Increasing µ leads to better generalization across independent
test sets
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Queue Size
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Effect of varying Queue size

• Very high queue size affects generalizability
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Varying Task and Dataset

• Overall, training on WSJ permuted document task
generalizes better than other tasks and datasets
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Conclusions

• Increasing ratio and quality of negative samples improves
generalizability of the coherence model

• New standard for coherence model evaluation - test the model
on several downstream applications

• Encourage research in this new paradigm of coherence
modeling
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Scan QR code for full paper and code

Thank you!
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