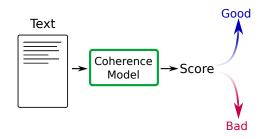
Introduction	Methodology	Experiments	Analysis	Conclusions
0000	0000000000	00	0000	

Rethinking Self-Supervision Objectives for Generalizable Coherence Modeling

Prathyusha Jwalapuram[†] Shafiq Joty^{†§} Xiang Lin[†] [†]Nanyang Technological University, Singapore [§]Salesforce Research Asia, Singapore

イロン 不通 とうせい イロン

Introduction	Methodology	Experiments	Analysis	Conclusions
●000	೦೦೦೦೦೦೦೦೦೦	00	0000	00
Coherence	Modeling			



- Increasing claims of fluency applications in language generation, summarization, machine translation, etc.
- Most work on coherence modeling **ignores downstream applications**

Introduction	Methodology	Experiments	Analysis	Conclusions
0000	೦೦೦೦೦೦೦೦೦೦	00	0000	00
Outline				

2 Methodology

- Contrastive Training
- Hard Negative Mining
- Global Negative Queue

3 Experiments

4 Analysis

5 Conclusions

Introduction	Methodology	Experiments	Analysis	Conclusions
00●0	0000000000	00	0000	00
Motivation				

Original Document

- (S1) Judy and I were in our back yard when the lawn started rolling like ocean waves.
- (S2) We ran into the house to get Mame, but the next tremor threw me in the air and bounced me as I tried to get to my feet.
- (S3) We are all fine here, although Mame was extremely freaked.
- (S4) Books and tapes all over my room.
- (S5) Not one thing in the house is where it is supposed to be, but the structure is fine.

Permuted Document

- (S4) Books and tapes all over my room.
- (S3) We are all fine here, although Mame was extremely freaked.
- (S2) We ran into the house to get Mame, but the next tremor threw me in the air and bounced me as I tried to get to my feet.
- (S5) Not one thing in the house is where it is supposed to be, but the structure is fine.
- (S1) Judy and I were in our back yard when the lawn started rolling like ocean waves.
 - Coherence models are commonly trained and evaluated on the **permuted document task** [Barzilay and Lapata, 2005]

Introduction	Methodology	Experiments	Analysis	Conclusions
0000	0000000000	00	0000	00
Motivation				

- Performance on permuted document task only partially indicative of coherence modeling capabilities [Pishdad et al., 2020]
- SOTA models perform well on permuted document task but generalize poorly to downstream tasks [Mohiuddin et al., 2021]

Introduction	Methodology	Experiments	Analysis	Conclusions
0000	●oooooooooo	00	0000	00
Method				

- Coherence models usually trained **pairwise** on permuted document task
 - Model only exposed to limited number of samples in this setting [Li and Jurafsky, 2017]

Introduction	Methodology	Experiments	Analysis	Conclusions
0000	● o ooooooooo	00	0000	00
Method				

- Coherence models usually trained **pairwise** on permuted document task
 - Model only exposed to limited number of samples in this setting [Li and Jurafsky, 2017]
- Learning with more negatives maximizes the mutual information between representations [van den Oord et al., 2018]

Introduction	Methodology	Experiments	Analysis	Conclusions
0000	● o ooooooooo	00	0000	00
Method				

- Coherence models usually trained **pairwise** on permuted document task
 - Model only exposed to limited number of samples in this setting [Li and Jurafsky, 2017]
- Learning with more negatives maximizes the mutual information between representations [van den Oord et al., 2018]

⇒ Compare each 'positive' document to multiple 'negative' documents using **contrastive learning** [Gutmann and Hyvärinen, 2010]

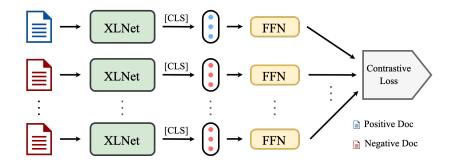
Introduction	Methodology	Experiments	Analysis	Conclusions
0000	⊙●○○○○○○○○	00	0000	
Model				

$$\boxed{\qquad} \longrightarrow \boxed{\text{XLNet}} \xrightarrow{\text{[CLS]}} \textcircled{} \longrightarrow \boxed{\text{FFN}}$$

- Obtain $[{\rm CLS}]$ representation of input document ${\cal D}$ using XLNet [Yang et al., 2019]
- Linear layer converts document representation to coherence score $f_{\theta}(\mathcal{D})$

 \rightarrow No task-specific architecture - trained purely through self-supervision

Introduction	Methodology	Experiments	Analysis	Conclusions
0000	oooooooooo	00	0000	00
Contrastiv	ve Learning			



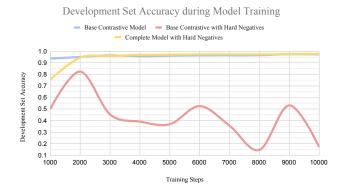
Introduction	Methodology	Experiments	Analysis	Conclusions
0000	000 ●000 0000	00	0000	00
Hard Nega	ative Mining			

• Quality of negatives used in contrastive training strongly influences model success [Wu et al., 2020]

 \Rightarrow Perform hard negative mining

- Sample more negatives than needed for training (h > N)
- Train model for a few steps
- Score the h negatives for the next set of training data
- Use top ${\cal N}$ to train the next steps

 \rightarrow Model iteratively mines harder and harder samples as it improves



- Training with hardest negatives can lead to bad local minima [Xuan et al., 2020]
- Larger gradient norms result in abrupt gradient steps [Xiong et al., 2020]

Introduction	Methodology	Experiments	Analysis	Conclusions
0000	000 000 00000	00	0000	00
Outline				

2 Methodology

- Contrastive Training
- Hard Negative Mining
- Global Negative Queue

3 Experiments

4 Analysis

5 Conclusions

Introduction	Methodology	Experiments	Analysis	Conclusions
0000	0000000 000	00	0000	
Global Negative Queue				

• Number of negatives for contrastive training limited by resource constraints

 \rightarrow Maintain large global queue of negative samples independent of current training sample

Introduction	Methodology	Experiments	Analysis	Conclusions
0000	0000000 0000	00	0000	00
Global Negative Queue				

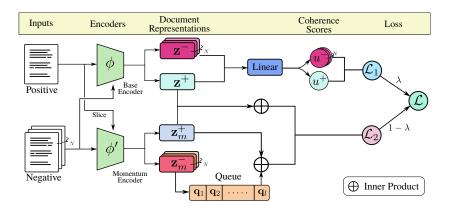
• Number of negatives for contrastive training limited by resource constraints

 \rightarrow Maintain large global queue of negative samples independent of current training sample

• But representations in the queue will become inconsistent as training progresses

 \rightarrow Use an auxiliary momentum encoder [He et al., 2020]

Introduction	Methodology	Experiments	Analysis	Conclusions
0000	oooooooooooo	00	0000	
Model Architecture				



Introduction	Methodology	Experiments	Analysis	Conclusions
0000	००००००० ०००	00	0000	00
Momentum Encoder				

- Auxiliary momentum encoder parameters are **not updated** through backpropagation
- Momentum encoder ϕ' is updated based on the base encoder ϕ :

$$\phi' \leftarrow \mu * \phi' + (1 - \mu) * \phi \tag{1}$$

• $\mu \in [0,1)$ is the momentum coefficient

Introduction	Methodology	Experiments	Analysis	Conclusions
0000	○○○○○○○○○	00	0000	00
Momentum Encoder				

- Use hard negative mining in combination with momentum encoder
- Momentum model temporal ensemble of exponential-moving-average versions of base model
- Due to this, gradients from the momentum loss also help in stabilising the overall training

Introduction	Methodology	Experiments	Analysis	Conclusions
0000	0000000000	●0	0000	00
Test sets				

WSJ: Standard permuted document train & test set

- SummEval: Machine generated summaries [Fabbri et al., 2020]
- LMvLM: Language model output
- INSteD-CNN: Sentence instrusion detection (CNN) [Shen et al., 2021]
- INSteD-Wiki: Sentence intrusion detection (Wikipedia) [Shen et al., 2021]
- StoryCloze: Commonsense reasoning [Sharma et al., 2018]

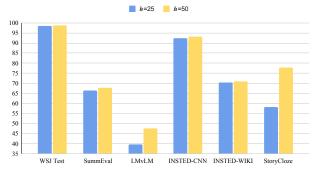
Introduction	Methodology	Experiments	Analysis	Conclusions
0000	0000000000	0	0000	00
Results				

Model	WSJ	SUMEVAL	LMvLM	INS-CNN	INS-WIKI	STRYCLZ
LCD-G	90.39	54.15	0.419	61.24	55.09	51.76
LCD-I	91.56	51.71	0.420	60.23	53.50	52.69
LCD-L	90.24	53.56	0.404	55.07	51.04	50.09
UNC	94.11	46.28	0.463	67.21	55.97	49.39
Our - Pairwise (No FT)	71.70	54.93	0.421	59.96	53.45	51.69
Our - Pairwise	98.23	64.83	0.458	91.96	70.85	71.84
Our - Contrastive	98.59	66.93	0.468	92.84	71.86	72.83
Our - Full Model	98.58	67.19	0.473	93.36	72.04	74.62

- LCD [Xu et al., 2019] and UNC [Moon et al., 2019] perform poorly across independent test sets
- Our models improve not only on the WSJ test set, but significantly across all the independent test sets

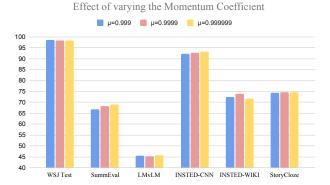
Introduction	Methodology	Experiments	Analysis	Conclusions
0000	0000000000	00	●000	
Number of Ranked Negatives				

Effect of Negatives Ranked for Hard Negative Mining



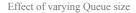
• Increasing number of negatives improves results, particularly on OOD test sets

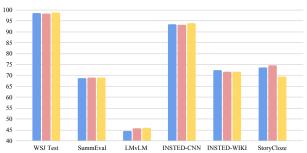
Introduction	Methodology	Experiments	Analysis	Conclusions
0000	0000000000	00	o●oo	00
Momentum Coefficient				



- Increasing μ leads to better generalization across independent test sets

Introduction	Methodology	Experiments	Analysis	Conclusions
0000	0000000000	00	00●0	00
Queue Size				





• Very high queue size affects generalizability

Vanving T	Tack and Datace	+		
			0000	
Introduction	Methodology	Experiments	Analysis	Conclusions

Varying Task :	ind Dataset
----------------	-------------

Train Dataset	Neg. Type	Model	WSJ	SUMMEVAL	LMvLM	INSTED-CNN	INSTED-WIKI	STORYCLOZE
INSTED-WIKI INSTED-CNN	Intrusion Intrusion		$\begin{array}{c} 95.24_{\pm 0.37} \\ 95.48_{\pm 0.47} \end{array}$	$53.03_{\pm 1.49}$ $57.85_{\pm 2.47}$	$\begin{array}{c} 0.490 _{\pm 0.01} \\ 0.502 _{\pm 0.01} \end{array}$	$94.07_{\pm 0.29}$ $97.83_{\pm 0.15}$	$82.01_{\pm 0.24}$ $73.52_{\pm 1.17}$	$\begin{array}{c} 64.21_{\pm 1.98} \\ 71.75_{\pm 1.81} \end{array}$
INSTED-WIKI INSTED-CNN WSJ	Permuted Permuted Permuted	Pairwise	$\begin{array}{c} 96.89_{\pm 0.23} \\ 97.03_{\pm 0.12} \\ 98.23_{\pm 0.20} \end{array}$	$\begin{array}{c} 64.53_{\pm 0.82} \\ 66.63_{\pm 0.97} \\ 64.83_{\pm 1.03} \end{array}$	$\begin{array}{c} 0.491 _{\pm 0.01} \\ 0.483 _{\pm 0.01} \\ 0.458 _{\pm 0.02} \end{array}$	$\begin{array}{c} 84.17_{\pm 1.50} \\ 92.61_{\pm 0.62} \\ 91.96_{\pm 1.09} \end{array}$	$\begin{array}{c} 71.35_{\pm 0.88} \\ 69.88_{\pm 0.64} \\ 70.85_{\pm 1.85} \end{array}$	$\begin{array}{c} 69.09_{\pm 2.29} \\ 68.95_{\pm 1.02} \\ 71.84_{\pm 2.33} \end{array}$

• Overall, training on **WSJ** permuted document task generalizes better than other tasks and datasets

Introduction	Methodology	Experiments	Analysis	Conclusions
0000	0000000000	00	0000	•0
Conclusions				

- Increasing ratio and quality of negative samples improves generalizability of the coherence model
- New standard for coherence model evaluation test the model on several downstream applications
- Encourage research in this new paradigm of coherence modeling

 Introduction
 Methodology
 Experiments
 Analysis
 Conclusions

 Scan QR code
 for full paper and code
 Code
 Conclusions

Thank you!

イロン イ団 とく ヨン イヨン

э

27 / 27